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Abstract: Histopathological examination of tissue sections is the gold standard for disease
diagnosis. However, the conventional histopathology workflow requires lengthy and laborious
sample preparation to obtain thin tissue slices, causing about a one-week delay to generate an
accurate diagnostic report. Recently, microscopy with ultraviolet surface excitation (MUSE), a
rapid and slide-free imaging technique, has been developed to image fresh and thick tissues with
specific molecular contrast. Here, we propose to apply an unsupervised generative adversarial
network framework to translate colorful MUSE images into Deep-MUSE images that highly
resemble hematoxylin and eosin staining, allowing easy adaptation by pathologists. By eliminating
the needs of all sample processing steps (except staining), a MUSE image with subcellular
resolution for a typical brain biopsy (5 mm × 5 mm) can be acquired in 5 minutes, which is further
translated into a Deep-MUSE image in 40 seconds, simplifying the standard histopathology
workflow dramatically and providing histological images intraoperatively.
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1. Introduction

Histopathological examination is essential for tissue-based disease diagnosis. The gold standard
is to obtain histologically stained images of thin tissue sections under a brightfield microscope,
which requires lengthy and laborious tissue preparation steps: (i) the tissue sample should be
formalin-fixed and paraffin-embedded (FFPE), (ii) sectioned by a microtome to get optically thin
slices (4–7 µm), (iii) picked up onto slides in the floatation bath and deparaffinized (iv) stained
with histological stains (e.g., hematoxylin and eosin (H&E)), and (v) mounted on a glass slide
(Fig. 1(A)). The entire procedure takes at least a day, and usually requires 3–5 days [1], causing
a delay for the disease diagnosis, thus, imposing an additional physical and mental burden on
patients. The alternative workflow for intraoperative histology can be achieved by frozen section,
which takes ∼20–30 mins to process the specimen (including freezing, cutting, and staining).
However, the image quality of the frozen section is often unsatisfactory compared to standard
histology provided by the FFPE tissue section due to the artifacts caused by poor sectioning and
staining qualities [2]. To address this pressing clinical need, it is important to develop a new
approach that could provide fast and slide-free histological imaging with high image quality and
molecular specificity for accurate intraoperative assessment.

In recent years, various slide-free imaging modalities have been proposed to eliminate the need
for a lengthy sample preparation procedure. These approaches include confocal microscopy [3],
photoacoustic microscopy [4,5], nonlinear microscopy [6–8], structured illumination microscopy
[9], and light-sheet microscopy [10]. To improve the interpretability of the images acquired
by these slide-free imaging techniques, different models have been utilized to transform these
images into histologically stained images, which can be divided into two categories, including
analytical-based and deep-learning-based approaches. For the analytical-based approach, the
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Fig. 1. Illustration of the histopathology workflow without and with Deep-MUSE images.
(A) A standard histopathology workflow for whole-slide imaging. (B) The proposed
histopathology workflow with Deep-MUSE images. The deep neural network generates
a Deep-MUSE image that is comparable to the conventional H&E-stained image after
inputting a MUSE image acquired from fresh mouse brain tissue, bypassing the complex
sample preparation procedures. (C) The basic structure of CycleGAN to learn the mapping
function between the MUSE image (e.g., FFPE mouse brain slices) and any H&E-stained
image. Two generator-discriminator pairs are used for model training using unpaired image
data. Rec: recovered; SSIM: structural similarity.
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virtual H&E-stained images are rendered from the slide-free grayscale images of the labeled
sample either by a simple linear color-coded model [11] or nonlinear absorption model using
Beer-Lambert-law [12]. These two models require prior knowledge about the property of the
fluorescent dyes in the biological tissues, which is normally hard to predict in practice, hindering
their reliability in generating high-quality virtual H&E-stained images.

For the deep-learning-based approach, the data-driven model employs the deep convolutional
neural network (DCNN) to transform label-free images into virtual H&E-stained images for
FFPE thin slices. The generative adversarial network (GAN) [13] is an advanced framework
typically consisting of two DCNN models for adversarial training, generating high-quality virtual
H&E-stained histological images from different imaging modalities such as autofluorescence
imaging [14] and quantitative phase imaging [15]. A type of GAN model learns the style
mapping function from any label-free images to brightfield H&E-stained images through paired
image data training. This conditional GAN with a supervised concept is known as pix2pix [16],
achieving image-to-image translation with rigidly paired label-free images and the corresponding
H&E-stained images of the same FFPE thin slices for training. As the ground truth H&E-stained
images can only be obtained for thin sections, the pix2pix model can only be applied to FFPE thin
tissue sections. In addition, the image co-registration process between different image modalities
is complicated, including the coarse global registration and accurate local registration, which
takes much effort for image data alignment [2]. The precision level of image pairs will also
be affected easily by other external conditions. For instance, the cellular information will be
slightly changed when FFPE tissue slides go through the H&E staining process, causing an
inherent difference between the two sets of images. To get rid of the image registration procedure,
unsupervised GAN frameworks such as UNIT [17] and CycleGAN [18] are developed to perform
style transfer between two different image domains, e.g., Fourier ptychographic microscopy
(FPM) images and immunohistochemistry (IHC) staining images [19].

Unsupervised deep learning models have been applied to nonlinear multimodal imaging
[20] and confocal microscopy [21] to obtain virtual H&E-stained images for thick specimens.
However, these imaging systems require expensive lasers and point scanning, hindering their
wide adaptation in hospitals. Microscopy with ultraviolet surface excitation (MUSE) is a novel
slide-free imaging technique with a simple design and low cost, which can be an alternative for
histological examination after an H&E conversion by different image translation models [22]. In
this regard, here, we propose an improved unsupervised deep-learning-based model with the
integration of microscopy with ultraviolet surface excitation (Deep-MUSE). Microscopy with
ultraviolet surface excitation (MUSE) is a rapidly emerging fluorescence-based slide-free imaging
modality with the advantage of simple, fast, and cost-effective [23]. The ultraviolet light-emitting
diode (UV-LED) excites the labeled cell nuclei, providing color-contrast that is equivalent to the
conventional histology [24]. The penetrating depth of UV light is merely around several microns
similar to the thickness of the common histology slice, allowing the fluorescence excitation to be
confined only on the surface of a tissue sample [25]. This key feature eliminates the need for
microtome sectioning of the specimen, bypassing the laborious sample preparation steps. In the
previous study [23], virtual staining was performed based on Beer-Lambert physical model of
transillumination microscopy, which requires prior knowledge about the RGB color coordinates
of fluorescent dyes and requires region selection by users to correct the presence of spectrally
mixed signals. Here, we propose that the H&E staining can be performed without any manual
tuning by the inference of the feed-forward network after the unpaired training for the CycleGAN
model has been completed. We demonstrate that our Deep-MUSE images are comparable to
standard H&E-stained images on mouse brain tissue with various sample preparation protocols,
including FFPE thin slices and fixed/fresh thick samples. Hence, this approach is highly suitable
for rapid histopathological diagnosis, which is a captivating alternative to the gold standard of
intraoperative assessment — frozen section.
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2. Materials and methods

2.1. Sample preparation and staining

In this study, FFPE thin slices, formalin-fixed and thick, fresh and thick mouse brain, and
formalin-fixed thick mouse liver samples were used. Mice were supplied from the Animal and
Plant Care Facility at the Hong Kong University of Science and Technology (HKUST). The
experiments were performed with the approval of the Animal Ethics Committee and the medical
surveillance of the Health, Safety & Environment Office at HKUST.

For FFPE sample preparation (Fig. S1), the harvested mouse brain was fixed with 4% formalin
solution for one day. Then, the fixed mouse brain was embedded in a paraffin block, cut into thin
sections (7-µm thick) by a microtome (HistoCore AUTOCUT, Leica Biosystems), and placed
on a quartz slide. After deparaffinization of the tissue slice with xylene, Hoechst 33342 (500
µg ml−1 in phosphate-buffered saline (PBS)) solution was used to stain the sample for about
20 s. After imaging by the MUSE system, the same slice was stained with H&E following the
conventional protocol to get the ground truth histological image.

For fixed and thick mouse brain sample preparation, after embedding the fixed mouse brain
into 2% agarose gel, vibratome was used to shave off several 100-µm thick slices until the
remaining thick brain sample has a flat surface. Afterward, we used the remaining thick brain
with a thickness of several millimeters for the experiment. A low concentration Hoechst 33342
(50 µg ml−1 in PBS) solution was used to stain the sample for about 2–3 mins, which ensures
only the tissue surface was labeled. After imaging with the MUSE system, the thick sample
was paraffin-embedded, sectioned for a series of layers adjacent to the surface of the block, and
stained with H&E to get the reference histological image. For fixed and thick mouse liver sample
preparation, the whole procedure is the same except mouse liver sample was stained with DAPI
(5 µg ml−1 in PBS) solution.

For fresh and thick mouse brain sample preparation, we cut the brain into halves using a typical
blade by hand. Then, we stained the brain with a low concentration Hoechst 33342 (50 µg ml−1

in PBS) solution for about 2–3 mins before MUSE imaging. After that, we put the stained brain
into a 4% formalin solution for fixation, embedded it in a paraffin block, and sectioned it into
thin slices (7-µm thick). Finally, we acquired the reference bright-field histological image with
H&E staining. All the above H&E histological images were obtained with a digital slide scanner
(NanoZoomer, Hamamatsu Photonics K.K.).

2.2. Data acquisition and processing

The slide-free MUSE images were captured using our lab-built inverted fluorescence microscope
with a motorized stage (Fig. S2). The specimen was put on a quartz slide which is UV transparent,
and the slide was placed on the sample holder connected to a three-axis motorized stage. A UV
light from an obliquely oriented 265-nm LED (M265L4, Thorlabs Inc.) was focused on the
Hoechst-stained sample. Subsequently, the excited fluorescence signals were collected using
a 10× objective lens (RMS10X-PF, NA= 0.3, Thorlabs Inc.), and focused on a color camera
(DS-Fi3, 5.9 megapixels, Nikon Inc.) using an infinity-corrected tube lens (TTL180-A, F= 180
mm, Thorlabs Inc.).

We developed a LabVIEW-based software user interface to acquire data by delivering
instructions to a single-chip microcomputer (SCM, Mega 2560, Arduino) in order to trigger the
camera and motorized stage to scan different areas along x and y directions. The exposure time
of the camera for each FOV (∼691 µm × 491 µm) is ∼500 ms. The mosaic FOVs would be
stitched with a 20% overlapping area in MATLAB after scanning the whole slice.

For FFPE samples, the MUSE and the corresponding H&E-stained images of the same thin
section can be provided. Therefore, it is possible to implement both pix2pix and CycleGAN



Research Article Vol. 12, No. 9 / 1 Sep 2021 / Biomedical Optics Express 5924

models, and then evaluate their performance by comparing them with the ground truth H&E-
stained images. The ROI between these two imaging modalities was registered in MATLAB
through a complex image registration process. First, the global registration process scaled the
pixel size, achieving rotation and shift corrections between the same ROI of the MUSE and
H&E-stained images [26]. Then, the local registration process was performed to accurately
register the input and target image pairs at the patch level by applying an elastic image registration
algorithm [27]. These image pairs were used for pix2pix model training and evaluation. The
size of the image patch was 256 × 256. The training datasets include 1011 paired MUSE and
H&E-stained image patches from the same FFPE mouse brain slice. The validation datasets
include 479 paired MUSE and H&E-stained image patches from another FFPE mouse brain
slice. For the CycleGAN model, the unpaired training datasets include 5883 MUSE and 5846
H&E-stained image patches.

For fixed mouse brain samples, the CycleGAN model was trained with unpaired 1505 MUSE
and 1502 H&E-stained image patches. The validation datasets include 3600 MUSE image
patches from another fixed mouse brain sample. For fixed mouse liver samples, the CycleGAN
model was trained with unpaired 1288 MUSE and 1481 H&E-stained image patches. The
validation datasets include 805 MUSE image patches. For fresh and thick mouse brain samples,
the CycleGAN model was trained with unpaired 3177 MUSE and 2574 H&E-stained image
patches. The validation datasets include 2500 MUSE image patches from another fresh mouse
brain sample.

2.3. Network architecture

The GAN [13] architecture is applied to learn the style transformation from slide-free MUSE
images to their equivalent bright-field H&E-stained images. A standard DCNN model uses an
encoder-decoder network [28] for image translation tasks. For example, the popular encoder-
decoder model “U-Net” [29] adds skip connections to transfer the low-level information directly
across the network. The L1 loss function (mean absolute error) or L2 loss function (mean squared
error) are the general option to minimize the distance between network output image and target
image. However, these two loss functions tend to produce blurry images caused by the pixel-wise
average of plausible results in the pixel space [30]. To address this problem, GANs can output
sharp and realistic images through the adversarial training of two DCNN models, including a
generative model (Generator) and a discriminative model (Discriminator). The generator G aims
to fool the discriminator D by producing fake images similar to target images, while D intends to
classify the generated fake image and real target image. In our case, the generator G learns the
statistical transformation between MUSE and H&E-stained images, whereas the discriminator
D aims to distinguish Deep-MUSE images (i.e., fake generator output) from real bright-field
H&E-stained images. We used two types of GAN models, including pix2pix [16] for paired
image translation tasks and CycleGAN [18] for unpaired image translation tasks.

Taking the FFPE samples as a demonstration, we can use these two GAN models. The
architecture of pix2pix (Fig. S3(A)) includes one generator G and one discriminator D. The
generator G translates image domain X (MUSE images) into image domain Y (H&E-stained
images). The MUSE image x is fed into the generator G and output the fake virtual H&E-
stained image (Deep-MUSE image)ŷ = G(x). The discriminator D makes a judgment about
the concatenation of the MUSE image x with the fake virtual H&E-stained image ŷ or real
H&E-stained image y. The loss function of GAN can be expressed as:

LGAN(G, D) = Ex,y[D(x, y)2] + Ex[(1 − D(x, G(x)))2] (1)

The output fake virtual H&E-stained image ŷ should also be similar to the ground truth
H&E-stained image y. We used the L1 loss function to measure the distance between these paired
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images:
L1(G) = Ex,y[| |y − G(x)| |1] (2)

The full objective of pix2pix is:

G∗ = arg min
G

max
D

LGAN(G, D) + λL1(G) (3)

For many applications, it is hard to acquire paired data for pix2pix model training. To overcome
this challenge, the architecture of CycleGAN (Fig. 1(C)) was designed for performing image
translation with unpaired data. From the preliminary experiment, we found that the model trained
by original MUSE images and H&E-stained images will output low-quality Deep-MUSE images
(Fig. S4). The model converted bright cell nuclei and dark background in MUSE images into a
white background and purple nuclei in Deep-MUSE images, respectively. The general tendency
is that the CycleGAN model will map the dark color (black) in MUSE images into the dark color
(purple) in H&E-stained images. To address this problem, we have inverted the color of MUSE
images for model training and inference, which leads to an accurate style transfer function.

We assigned the inverted MUSE image x to image domain X, and the H&E-stained image y to
image domain Y. The generator G maps image domain X to image domain Y by transforming
the real MUSE image x into fake virtual H&E-stained image ŷ = G(x). The generator F maps
image domain Y to image domain X by transforming real H&E-stained image y into fake MUSE
image x̂ = F(y). The discriminator DX classifies real MUSE image x and fake MUSE image x̂.
The discriminator DY classifies real H&E-stained image y and fake virtual H&E-stained image ŷ.
The objective of the adversarial loss function is:

LGAN(G, DY , X, Y) = Ex∼pdata(x)[(DY (G(x)) − 1)2] + Ey∼pdata(y)[DY (y)2] (4)

LGAN(F, DX , Y , X) = Ey∼pdata(y)[(DX(F(y)) − 1)2] + Ex∼pdata(x)[DX(x)2] (5)

With this GAN loss only, it is not possible to guarantee successful transformation between
the MUSE image and H&E-stained image without pair images for supervised training. It is
important to make sure that all the content in MUSE images can be preserved (e.g., the nuclear
size and count), and the style should be visually similar to H&E-stained images during the
transformation. By combining the mapping function of the generators G and F, we can impose
an extra constraint named cycle consistency loss [18]. A MUSE image x from domain X will
become recovered image x̂ = F(G(x)) after passing the generators G and F, i.e., F(G(x)) = x.
Similarly, an H&E-stained image y from domain Y is converted to recovered image ŷ = G(F(y))
after going through the generators F and G, i.e., G(F(y)) = y. Therefore, we used L1 loss between
original images and recovered images as this cycle-consistency loss:

Lcyc(G, F) = Ex∼pdata(x)[| |F(G(x)) − X | |1] + Ey∼pdata(y)[| |G(F(y)) − y| |1] (6)

To further improve the perceptual quality of the recovered images, we also calculated the
structural similarity (SSIM) index [31] between the original image x and recovered image y as
the perceptual distance. The SSIM index is composed of three functions including luminance
l(x, y), contrast c(x, y), and structure s(x, y):

SSIM(x, y) = [l(x, y)α · c(x, y)β · s(x, y)γ] (7)

l(x, y) =
2µxµy + c1

µ2
x + µ

2
y + c1

(8)

c(x, y) =
2σxσy + c2

σ2
x + σ

2
y + c2

(9)
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s(x, y) =
σxy + c3

σxσy + c3
(10)

where µx and µy refer to the mean values of image x and image y, respectively. σx and σy refer
to the standard deviations of image x and image y, respectively. σxy stands for the covariance
between image x and image y, and c1 and c2 stand for constants. The expression can be simplified
by setting α = 1, β = 1, γ = 1 and c3 = c2/2. The value of the SSIM index is ranged from zero
to one. Then, the loss function is constructed by one minus the SSIM index. In our experiment,
the CycleGAN model trained with SSIM loss outputs smooth and authentic Deep-MUSE images
(Fig. S5). SSIM loss is calculated between original images x, y, and the recovered images
x̂ = F(G(x)), ŷ = G(F(y)):

Lssim(G, F) = Ex∼pdata(x)[| |F(G(x)) − X | |ssim] + Ey∼pdata(y)[| |G(F(y)) − y| |ssim] (11)

The generators G and F should be identity mapping for input H&E-stained image y and MUSE
image x, respectively [32], i.e., G(y) = y and F(x) = x. The L1 loss function can be used to
measure the image distance:

Lidt(G, F) = Ey∼pdata(y)[| |G(y) − y| |1] + Ex∼pdata(x)[| |F(x) − x| |1] (12)

The final objective of CycleGAN becomes:

G∗, F∗ = arg min
G,F

max
DX ,DY

LGAN(G, DY , X, Y) + LGAN(F, DX , Y , X)

+ λ1Lcyc(G, F) + λ2Lidt(G, F) + λ3Lssim(G, F)
(13)

The generator and discriminator architectures (Fig. S3(B)) are the same in pix2pix and
CycleGAN. Only the input images of the generator and discriminator are different as mentioned
above. The generator is adopted from the image transformation network that contains convolutional
layers for image downsampling and upsampling [33]. Several residual blocks [34] connect
the downsampling and upsampling blocks. The discriminator networks use PatchGAN [16] to
preserve the high-frequency structures in the images. The real or fake images will be classified at
the local image patch level after passing through the convolutional layers.

For pix2pix experiments, we set λ= 10 in Eq. (3) and train the model with 155 epochs. For
CycleGAN experiments, we set λ1 = 10, λ2 = 5, λ3 = 1 in Eq. (1)3 and train the model with 70
epochs. The networks were trained from scratch with a learning rate of 0.0002. The Gaussian
distribution with a mean= 0 and standard deviation= 0.02 was used to initialize the weights of
the network. An Adam optimizer was used to minimize the overall loss functions.

2.4. Novel workflow

By the integration of the MUSE system and deep neural network, we enable a new histopathology
workflow (Fig. 1(B)) that can provide rapid slide-free histological imaging of unprocessed
specimens with various thicknesses. The MUSE system (Fig. S2) is applied to generate
fluorescence images of a fresh tissue specimen by UV-LED illumination directly. This system can
achieve high resolution and high imaging contrast with the visible light emission of fluorescent
dyes excited by UV light, which is sufficient to reveal the morphology of individual cell nuclei.
The MUSE image quality is comparable to the bright-field H&E-stained images obtained from
a digital slide scanner using an objective lens with the same numerical aperture (NA). The
unsupervised deep learning model (Fig. 1(C)) learns the style transfer function between the
MUSE and H&E-stained images after the bidirectional training of unpaired image data. In
whole-slide imaging, we have considered an imaging FOV of 5 mm × 5 mm, which is a typical
size of a brain biopsy for comparison. The MUSE imaging system takes ∼6 mins only to generate
Deep-MUSE images for the entire workflow, whereas the NanoZoomer takes ∼2–3 mins to obtain
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a brightfield image with the same FOV after lengthy sample preparation steps. We validate the
proposed workflow using mouse brain tissue samples with different thicknesses and preparation
protocols including FFPE thin sections, fixed thick mouse brain sections cut by vibratome, and
fresh thick mouse brain sections cut by hand. The results show that the CycleGAN model is
capable of transforming MUSE images into Deep-MUSE images that are comparable to the
brightfield H&E-stained images regardless of the sample thickness.

2.5. Evaluation metrics

To evaluate the Deep-MUSE image quality of different mouse brain sample, we use three quanti-
tative metrics including maximum mean discrepancy (MMD), Pearson correlation coefficient,
and peak signal-to-noise ratio (PSNR).

The simplified mathematic form of MMD can be represented as:

MMD[F, X, Y] = ||
1
n

n∑︂
i=1

f (xi) −
1
m

m∑︂
j=1

f (yi)| |H (14)

where image data distribution X has n samples, image data distribution Y has m samples, and the
H term refers to kernel embedding of distributions.

Pearson correlation coefficient is defined as:

ρ(X, Y) =
cov(X, Y)
σXσY

=
E[(X − µX)(Y − µY )]

σXσY
(15)

where cov(X, Y) stands for covariance between data distributions X and Y, σX and σY refer to the
standard deviations of data distributions X and Y, respectively. In our case, a Deep-MUSE image
x and an H&E-stained image y were used as data distributions X and Y.

PSNR is defined as:

PSNR = 10 · log10(
MAX2

I
MSE

) (16)

where MAXI equals to 255 for 8-bit image data, and MSE represents the mean squared error
between an input image X and a target image Y with an image size of m × n. For color images,
the MSE of R, G, and B channels were averaged.

MSE =
1

mn

m−1∑︂
i=0

n−1∑︂
i=0

[X(i, j) − Y(i, j)]2 (17)

3. Results

3.1. Imaging of FFPE thin mouse brain sections without and with H&E staining

To initially validate the performance of our MUSE imaging system and the associated deep
learning algorithm for style transformation, several 7-µm FFPE mouse brain sections with Hoechst
staining are imaged by our MUSE system. The MUSE images (Fig. 2(A), 2(E), 2(I), and 2(M))
are subsequently transformed into Deep-MUSE images by both pix2pix (Fig. 2(B), 2(F), 2(J),
and 2(N)) and CycleGAN (Fig. 2(C), 2(G), 2(K), and 2(O)) models. We scanned the FFPE thin
mouse brain section over a region of interest (ROI) with 7.4 mm × 5.2 mm along the x and y
axes, respectively. The scanning time was ∼3 mins. The entire MUSE image of this section is
presented in Fig. 2(A). As a result of the excited fluorescence signal from the FFPE sample with
Hoechst staining, cell nuclei appear to be green and the cytoplasm is dark blue in MUSE images.
After MUSE imaging, the same slice was stained with H&E, and then imaged with a digital slide
scanner for comparison (Fig. S1). The cell nuclei (purple) and cytoplasm (pink) are shown in the
corresponding bright-field H&E-stained image (Fig. 2(D)). Since these two image modalities
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were performed on the same slice, the cell distribution and structure should match well between
the MUSE images (Fig. 2(A), 2(E), 2(I), and 2(M)) and the corresponding H&E-stained images
(Fig. 2(D), 2(H), 2(L), and 2(P)).

Fig. 2. Histological images of a thin mouse brain section obtained by different methods.
(A) Hoechst-stained mouse brain FFPE thin slice imaged by the MUSE system. The MUSE
image is used as an input into different GAN models. (B) A Deep-MUSE image output
by the pix2pix model. (C) A Deep-MUSE image output by the CycleGAN model. (D) A
brightfield image of the same mouse brain slice with H&E staining. (E, F, G, H) Zoomed-in
images of the hippocampus (red solid regions) in (A), (B), (C), and (D), respectively. (I, J, K,
L) Zoomed-in images of the yellow solid regions in (E), (F), (G), and (H), respectively. Note
that all these images reveal similar cellular structures and recognizable nucleoli (orange
arrows). (M, N, O, P) Zoomed-in images of the blue solid regions in (E), (F), (G), and (H),
respectively. Note that all these images show comparable nucleolus structures (blue arrows).

The Deep-MUSE images are generated from the same MUSE image (Fig. 2(A)) by the pix2pix
model (Fig. 2(B)) and CycleGAN model (Fig. 2(C)). Note that this MUSE image dataset was only
used for validation, and the well-trained models were built on other training datasets. For pix2pix
model training, the MUSE and H&E-stained image pairs of the same FFPE slice were obtained
after the rigid image registration process. For CycleGAN model training, the same MUSE image
for pix2pix model training was selected. However, the H&E-stained image was chosen from
our digital H&E-stained image database because the CycleGAN model does not require paired
data. Both GAN models learned to translate the MUSE images into Deep-MUSE images that are
equivalent to the conventional H&E-stained images after training. The MUSE image (Fig. 2(E))
and the corresponding H&E-stained image (Fig. 2(H)) of the hippocampus region have a great
similarity in the cell distribution. The Deep-MUSE images by the pix2pix model (Fig. 2(F)) and
CycleGAN model (Fig. 2(G)) preserved the cell distribution from the MUSE image (Fig. 2(E)),
and possessed the H&E color style that is comparable to the ground truth H&E-stained image
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(Fig. 2(H)). The two zoomed-in regions (yellow (Fig. 2(I)) and blue (Fig. 2(M))) marked in the
MUSE image (Fig. 2(E)) show subcellular features such as nucleoli, marked with orange and blue
arrows. The corresponding regions (Fig. 2(L) and 2(P)) in the H&E-stained image (Fig. 2(H))
have similar features and cellular details, marked with orange and blue arrows, which indicates
that the original MUSE images can provide high imaging contrast and high resolution as the
conventional bright-field images with H&E staining. To further improve the interpretability and
applicability of our MUSE images by pathologists, Deep-MUSE images can be used to provide a
similar style as conventional H&E-stained images, which can be generated by the pix2pix model
(Fig. 2(J) and 2(N)) and CycleGAN model (Fig. 2(K) and 2(O)). Visualization 1 shows a series
of closeup images of a column in the ROI of an FFPE mouse brain section imaged by MUSE
and the corresponding H&E-stained images using different methods. The cellular structures and
cytoplasm can be well identified in the closeup scanning images. The ground truth H&E-stained
images (Fig. 2(L) and 2(P)) show many white cracks and suffer from information loss due to
the subsequent sample preparation in the H&E staining process, e.g., washing by distilled water,
dehydration using graded ethanol, vitrification by xylene. Deep-MUSE images (Fig. 2(K) and
2(O)) preserve the cellular and cytoplasm information from the original MUSE images (Fig. 2(I)
and 2(M)).

To evaluate the performance of the pix2pix and CycleGAN models, we used two quantitative
metrics — Pearson correlation coefficient and PSNR, to further analyze the Deep-MUSE image
quality of the FFPE thin mouse brain section (Fig. 3 and Table 1). The corresponding ground truth
H&E-stained images were used as the reference images in the evaluation. Pearson correlation
coefficient is a statistical measure reflecting the linear correlation between two data variables.
The value ranges from zero to one. The higher the value (i.e., closer to one), the higher the image
similarity between the Deep-MUSE image and the ground truth H&E-stained image. PSNR is a
commonly used indicator to measure image quality, especially in image super-resolution and
reconstruction tasks [35]. The higher the PSNR value, the better the image quality.

Table 1. Evaluation of Deep-MUSE image quality generated by different GAN models using the
FFPE thin mouse brain section

For the training dataset, the distributions of Pearson correlation coefficient and PSNR show 
that the quality of the Deep-MUSE images generated by the pix2pix model is higher than that 
of the Deep-MUSE images generated by the CycleGAN model (Fig. 3(A) and 3(C)). However, 
we should consider the performance of the models on the validation dataset for practical 
applications. The comparison of the training dataset is not favorable to the CycleGAN model 
because the pix2pix model learns directly from the ground truth H&E-stained image data with 
paired training. In practice, the quality of Deep-MUSE images generated by the pix2pix model 
drops significantly on the validation dataset, which becomes comparable to the Deep-MUSE 
image quality generated by the CycleGAN model (Fig. 3(B) and 3(D)). Table 1 shows the 
detailed statistical values with different models and datasets. The pix2pix model obtained 
higher values in the Pearson correlation coefficient, PSNR, and SSIM than that of the 
CycleGAN model on the training dataset. However, for the validation dataset, the Deep-MUSE 
images generated by the two models have nearly identical image quality with similar values of 
Pearson correlation coefficient and PSNR. The SSIM of Deep-MUSE images on the validation 
dataset shows that the CycleGAN model has better generalization than the pix2pix model with 
a higher value. These qualitative evaluation metrics prove that the Deep-MUSE image 
generated by the CycleGAN model is stable on both training and validation datasets. 
 

Table 1. Evaluation of Deep-MUSE image quality generated by different GAN models  
using the FFPE thin mouse brain section 

 

3.2 Deep-MUSE image of a fixed thick mouse brain and liver versus conventional H&E-
stained image 

To demonstrate the possibility of the proposed histopathology workflow using Deep-MUSE 
images with the CycleGAN model for thick tissue, we imaged a formalin-fixed thick mouse 
brain and liver tissues. The MUSE image was then transformed into a Deep-MUSE image using 
the well-trained CycleGAN model with minimal and stable loss (Fig. S6). Subsequently, the 
imaged sample was further processed following the standard histopathology workflow to get 
the H&E-stained image of the superficial layer as a reference. Note that the thick specimen 
surface imaged by the MUSE system is not exactly the reference H&E-stained thin slice due to 
the unavoidable difference in orientation and imaging thickness. Therefore, only the CycleGAN 
model can be utilized for a thick tissue style transformation, further demonstrating the 
importance of unsupervised learning in this application. 

We have imaged a fixed mouse brain specimen. The scanning time was ~7 mins to image 
the entire cross-section with an area of 10.9 mm × 7.0 mm (Fig. 4(A)). Fig. 4 shows this 
validation dataset using the well-trained CycleGAN model. The Deep-MUSE image generated 
by the CycleGAN model (Fig. 4(B)) and the reference H&E-stained image (Fig. 4(C)) provide 
similar cellular features, which can be easily identified in the hippocampus regions. The images 
of the left hippocampus region (Fig. 4(D) to 4(F), red regions) and right hippocampus region 
(Fig. 4(G) to 4(I), purple regions) show similar distributions of cell nuclei. The yellow (Fig. 
4(J) to 4(L)) and blue regions (Fig. 4(M) to 4(O)) show the individual cell nuclei including their 
nucleoli. Both the Deep-MUSE images (Fig. 4(K) and 4(N)) and original MUSE images (Fig. 
4(J) and 4(M)) can distinguish nucleoli from dark purple color and bright green color, 
respectively, which are marked with orange arrows (Fig. 4(J) and 4(K)) and blue arrows (Fig. 

Model Dataset type Pearson correlation coefficient 
(mean ± std) 

PSNR 
(mean ± std) SSIM (mean ± std) 

pix2pix 
Training dataset 0.88 ± 0.02 23.6 ± 0.9 0.53 ± 0.06 

Validation dataset 0.73 ± 0.05 19.5 ± 1.1 0.27 ± 0.08 

CycleGAN 
Training dataset 0.70 ± 0.07 19.5 ± 1.4 0.30 ± 0.09 

Validation dataset 0.71 ± 0.07 19.0 ± 1.3 0.37 ± 0.08 

For the training dataset, the distributions of Pearson correlation coefficient and PSNR show
that the quality of the Deep-MUSE images generated by the pix2pix model is higher than that of
the Deep-MUSE images generated by the CycleGAN model (Fig. 3(A) and 3(C)). However, we
should consider the performance of the models on the validation dataset for practical applications.
The comparison of the training dataset is not favorable to the CycleGAN model because the
pix2pix model learns directly from the ground truth H&E-stained image data with paired training.
In practice, the quality of Deep-MUSE images generated by the pix2pix model drops significantly
on the validation dataset, which becomes comparable to the Deep-MUSE image quality generated
by the CycleGAN model (Fig. 3(B) and 3(D)). Table 1 shows the detailed statistical values
with different models and datasets. The pix2pix model obtained higher values in the Pearson
correlation coefficient, PSNR, and SSIM than that of the CycleGAN model on the training dataset.
However, for the validation dataset, the Deep-MUSE images generated by the two models have
nearly identical image quality with similar values of Pearson correlation coefficient and PSNR.
The SSIM of Deep-MUSE images on the validation dataset shows that the CycleGAN model has

https://doi.org/10.6084/m9.figshare.14742972
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Fig. 3. Image quality comparison of different Deep-MUSE images generated by pix2pix
and CycleGAN models. (A) Pearson correlation coefficient between Deep-MUSE and
ground truth H&E-stained image pairs tested on the training dataset. (B) Pearson correlation
coefficient between Deep-MUSE and ground truth H&E-stained image pairs tested on the
validation dataset. (C) PSNR between Deep-MUSE and ground truth H&E-stained image
pairs tested on the training dataset. (D) PSNR between Deep-MUSE and ground truth
H&E-stained image pairs tested on the validation dataset.

better generalization than the pix2pix model with a higher value. These qualitative evaluation
metrics prove that the Deep-MUSE image generated by the CycleGAN model is stable on both
training and validation datasets.

3.2. Deep-MUSE image of a fixed thick mouse brain and liver versus conventional
H&E-stained image

To demonstrate the possibility of the proposed histopathology workflow using Deep-MUSE
images with the CycleGAN model for thick tissue, we imaged a formalin-fixed thick mouse
brain and liver tissues. The MUSE image was then transformed into a Deep-MUSE image using
the well-trained CycleGAN model with minimal and stable loss (Fig. S6). Subsequently, the
imaged sample was further processed following the standard histopathology workflow to get
the H&E-stained image of the superficial layer as a reference. Note that the thick specimen
surface imaged by the MUSE system is not exactly the reference H&E-stained thin slice due to
the unavoidable difference in orientation and imaging thickness. Therefore, only the CycleGAN
model can be utilized for a thick tissue style transformation, further demonstrating the importance
of unsupervised learning in this application.

We have imaged a fixed mouse brain specimen. The scanning time was ∼7 mins to image the
entire cross-section with an area of 10.9 mm × 7.0 mm (Fig. 4(A)). Figure 4 shows this validation
dataset using the well-trained CycleGAN model. The Deep-MUSE image generated by the
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CycleGAN model (Fig. 4(B)) and the reference H&E-stained image (Fig. 4(C)) provide similar
cellular features, which can be easily identified in the hippocampus regions. The images of the
left hippocampus region (Fig. 4(D) to 4(F), red regions) and right hippocampus region (Fig. 4(G)
to 4(I), purple regions) show similar distributions of cell nuclei. The yellow (Fig. 4(J) to 4(L)) and
blue regions (Fig. 4(M) to 4(O)) show the individual cell nuclei including their nucleoli. Both the
Deep-MUSE images (Fig. 4(K) and 4(N)) and original MUSE images (Fig. 4(J) and 4(M)) can
distinguish nucleoli from dark purple color and bright green color, respectively, which are marked
with orange arrows (Fig. 4(J) and 4(K)) and blue arrows (Fig. 4(M) and 4(N)). Visualization 2
shows a series of closeup MUSE images of a column of the ROI, the corresponding Deep-MUSE
images, and the H&E-stained images of the adjacent layer. The style and the cellular information
of Deep-MUSE images generated by the CycleGAN model are comparable to the conventional
H&E-stained images.

Fig. 4. Comparison between MUSE and Deep-MUSE images of a fixed thick mouse
brain with H&E-stained images of the adjacent thin section. (A) MUSE image of a thick
mouse brain stained by Hoechst. (B) Deep-MUSE image generated by CycleGAN. (C)
Reference H&E-stained image of the adjacent thin section shown in (A) obtained after
paraffin embedding, sectioning, and H&E-staining. (D, E, F) Zoomed-in images of the left
hippocampus (solid red regions) in (A), (B), and (C), respectively. (G, H, I) Zoomed-in
images of the right hippocampus (solid purple regions) in (A), (B), and (C), respectively.
(J, K, L) Zoomed-in images of the yellow regions in (D), (E), and (F), respectively. Note
that similar cellular structures (orange arrows) can be observed in (J) and (K). (M, N, O)
Zoomed-in images of the blue regions in (G), (H), and (I), respectively. Note that similar
cellular structures (blue arrows) can be observed in (M) and (N).

We also imaged a fixed and thick mouse liver specimen to explore the applicability of Deep-
MUSE on other organs. Figure 5 shows MUSE images (Fig. 5(A) and (B)), Deep-MUSE images
(Fig. 5(C) and (D)), and reference H&E-stained images (Fig. 5(E) and (F)) from two regions of
the same mouse liver sample. The Deep-MUSE images (Fig. 5(C) and (D)) generated by the
CycleGAN model and original MUSE images (Fig. 5(A) and (B)) have similar structures such
as hepatocytes and blood vessels marked with green and orange arrows, respectively. These
common cellular features are comparable in the reference H&E-stained images (Fig. 5(E) and
(F)). The results demonstrate that Deep-MUSE imaging can also be applied to other tissues and
organs.

https://doi.org/10.6084/m9.figshare.14742978
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Fig. 5. Comparison between MUSE and Deep-MUSE images of a fixed and thick mouse
liver with H&E-stained images of the adjacent thin section. (A, B) MUSE images of a thick
mouse liver stained by DAPI. Note that hepatocytes and blood vessels are marked with green
and orange arrows, respectively. (C, D) Deep-MUSE images generated by the CycleGAN.
Note that hepatocytes and blood vessels corresponding to (A) and (B) are marked with green
and orange arrows, respectively. (E, F) Reference H&E-stained images of the adjacent thin
section.

3.3. Deep-MUSE image of a fresh thick mouse brain versus traditional H&E-stained
image

To illustrate the full potential of our novel approach for clinical and intraoperative applications,
our proposed histopathology workflow using Deep-MUSE images with the CycleGAN model
has been applied to fresh mouse brain specimens. Similarly, the bright-field H&E-stained image
of the adjacent thin section was obtained for validation.

For the fresh mouse brain specimen, the ROI was 10.7 mm × 7.3 mm, and the scanning time
was ∼6.5 mins. Figure 6 shows this validation dataset using the well-trained CycleGAN model.
Note that the color tone of the fresh thick mouse brain image (Fig. 6(A)) is different from the fixed
thick mouse brain image (Fig. 4(A)) due to different biomolecular properties with/without fixation
and different white balance ratio of the camera. Therefore, the parameters of the CycleGAN
model are unique for samples with different preparation protocols. The models were trained
separately. The MUSE (Fig. 6(A)) and Deep-MUSE images (Fig. 6(B)) show identical features
in the hippocampus region. The red (Fig. 6(C)) and yellow regions (Fig. 6(F)) are from the right
hippocampus in the MUSE image (Fig. 6(A)). The corresponding Deep-MUSE images output by
the CycleGAN model (Fig. 6(D) and 6(G)) and the reference H&E-stained images (Fig. 6(E) and
6(H)) show similar cellular features and distributions. Individual cells can be observed in the
original MUSE images (Fig. 6(C) and 6(F)), the Deep-MUSE images (Fig. 6(D) and 6(G)), and
the reference H&E-stained images (Fig. 6(E) and 6(H)).

To evaluate the Deep-MUSE image quality, we adopted qualitative and quantitative methods
for both fixed or fresh thick tissue samples. First, we used the pre-trained deep neural network
VGG16 [36] to extract the 4096 dimension feature vector of the input images for further analysis,
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Fig. 6. Comparison between MUSE and Deep-MUSE images of a fresh mouse brain with
H&E-stained images of the adjacent thin section. (A) MUSE image of a fresh mouse brain
stained by Hoechst. (B) Deep-MUSE image output generated by CycleGAN. (C and D)
Zoomed-in MUSE and Deep-MUSE images of the red regions in (A) and (B), respectively.
(F and G) Zoomed-in MUSE and Deep-MUSE images of the yellow regions in (A) and (B),
respectively. (E and H) H&E-stained images of the adjacent thin section from the same
sample, which are corresponding to (C) and (F), respectively.



Research Article Vol. 12, No. 9 / 1 Sep 2021 / Biomedical Optics Express 5934

which can reduce data volume and reserve the discriminative information. For qualitative
measurement, we applied t-SNE [37] to visualize the data on a two-dimensional graph. We chose
three image datasets for visualization, which include MUSE images, H&E-stained images for
model training, and Deep-MUSE images generated by the model. The visualization diagrams for
the fixed mouse brain specimen (Fig. 7(A)) and fresh mouse brain specimen (Fig. 7(B)) show that
the clear separation of the MUSE images from the Deep-MUSE and the H&E-stained images.
The Deep-MUSE images mixed with the conventional H&E-stained images, which indicates that
the Deep-MUSE images generated by the deep learning model mimic the style of the specified
H&E-stained images well.

Fig. 7. Evaluation of MUSE and Deep-MUSE image quality for thick mouse brain
specimens. (A) T-SNE visualization of MUSE, Deep MUSE, and H&E-stained images for
the fixed mouse brain. (B) T-SNE visualization of MUSE, Deep MUSE, and H&E-stained
images for the fresh mouse brain. (C) The MMD distance from MUSE and Deep-MUSE
images to the H&E-stained images for the fixed mouse brain. (D) The MMD distance from
MUSE and Deep-MUSE images to the H&E-stained images for the fresh mouse brain.

To analyze the Deep-MUSE image quality quantitatively, we calculated the maximum mean
discrepancy (MMD) [38] to measure the distance between the generated image distribution and
the target image distribution [39]. In our case, we computed the MMD distance from Deep-MUSE
image features to conventional H&E-stained image features. To provide a reference, the MMD
distance from the original MUSE image features to the conventional H&E-stained image features
was also computed for comparison. The value of MMD is based on every batch with 100 images
sampled from each data distribution. The MMD distance for the fixed mouse brain specimen
(Fig. 7(C)) and fresh mouse brain specimen (Fig. 7(D)) reveals a similar conclusion that the
distance from the generated Deep-MUSE images to the conventional H&E-stained images is
much shorter than the distance from the original MUSE images to the conventional H&E-stained
images. This result is in line with our expectation as the CycleGAN model learns the complex
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style mapping function between the MUSE images and H&E-stained images during the training
stage. The Deep-MUSE images output by our model is close to the conventional H&E-stained
images. Table 2 shows the statistical data of MMD distances for both fixed and fresh thick mouse
brain samples, corresponding to the Fig. 7(C) and 7(D).

Table 2. MMD distances of MUSE and Deep-MUSE images to training H&E-stained images using
different thick mouse brain samples

 
Fig. 7. Evaluation of MUSE and Deep-MUSE image quality for thick mouse brain specimens. 
(A) T-SNE visualization of MUSE, Deep MUSE, and H&E-stained images for the fixed mouse 
brain. (B) T-SNE visualization of MUSE, Deep MUSE, and H&E-stained images for the fresh 
mouse brain. (C) The MMD distance from MUSE and Deep-MUSE images to the H&E-stained 
images for the fixed mouse brain. (D) The MMD distance from MUSE and Deep-MUSE images 
to the H&E-stained images for the fresh mouse brain. 

To analyze the Deep-MUSE image quality quantitatively, we calculated the maximum 
mean discrepancy (MMD) [38] to measure the distance between the generated image 
distribution and the target image distribution [39]. In our case, we computed the MMD distance 
from Deep-MUSE image features to conventional H&E-stained image features. To provide a 
reference, the MMD distance from the original MUSE image features to the conventional H&E-
stained image features was also computed for comparison. The value of MMD is based on 
every batch with 100 images sampled from each data distribution. The MMD distance for the 
fixed mouse brain specimen (Fig. 7(C)) and fresh mouse brain specimen (Fig. 7(D)) reveals a 
similar conclusion that the distance from the generated Deep-MUSE images to the conventional 
H&E-stained images is much shorter than the distance from the original MUSE images to the 
conventional H&E-stained images. This result is in line with our expectation as the CycleGAN 
model learns the complex style mapping function between the MUSE images and H&E-stained 
images during the training stage. The Deep-MUSE images output by our model is close to the 
conventional H&E-stained images. Table 2 shows the statistical data of MMD distances for 
both fixed and fresh thick mouse brain samples, corresponding to the Fig. 7(C) and 7(D). 

 
Table 2. MMD distances of MUSE and Deep-MUSE images to training H&E-stained images 

using different thick mouse brain samples 
Tissue type Image category Value (mean ± std) 

Fixed mouse brain 
MUSE image 2.436 ± 0.092 

Deep-MUSE image 0.338 ± 0.039 

Fresh mouse brain 
MUSE image 3.470 ± 0.113 

Deep-MUSE image 0.417 ± 0.042 
 

4. Discussion

We demonstrated that the MUSE imaging system integrated with a deep learning algorithm is
able to provide rapid slide-free histological images (i.e., Deep-MUSE) which are equivalent
to standard H&E-stained images. This data-driven approach has great potential to become an
alternative intraoperative histopathology workflow, replacing the needs of any sample processing
(except staining) while providing high-quality images that are close to FFPE thin slices with
H&E staining. To prove the reliability of our proposed workflow, we compared the performance
of the CycleGAN model and the state-of-the-art pix2pix model on FFPE thin slices with the
ground truth H&E-stained images as the reference (Fig. 2 and Visualization 1). Afterward, the
presented workflow was tested on unsectioned fixed mouse brain and liver specimens to further
explore the rapid and slide-free advantages of the MUSE imaging technique (Fig. 4, Fig. 5 and
Visualization 2). Finally, we directly apply our workflow to fresh mouse brain samples (Fig. 6).
The correspondence between Deep-MUSE images and standard H&E-stained images shows that
our approach can assist pathologists for histopathological examination.

The superiority of the proposed histopathology workflow with Deep-MUSE images can be
elaborated in two aspects. First, it is rapid to acquire Deep-MUSE images with similar molecular
contrast compared with the conventional H&E-stained images. For the MUSE imaging system,
its slide-free imaging capability allows imaging of thick tissue directly with UV excitation light,
bypassing time-consuming sample preparation steps that are needed to obtain optically thin
sections in standard histopathology workflow. It will only take ∼30 seconds for hand cutting, ∼2
mins for Hoechst staining, and ∼2 min for acquiring a MUSE image with subcellular resolution
for a typical brain biopsy (5 mm × 5 mm). As for training the deep neural network, dedicated
hardware (e.g., graphics processing units (GPUs)) can be used for acceleration. For example,
the model training of the fresh mouse brain network accelerated by a single GPU requires only
20 hours. More importantly, once the model obtains optimal parameters after training, the
feed-forward network outputs the Deep-MUSE images rapidly with the speed of 1.6 s mm−2 by a
single GPU acceleration. It will take ∼40 seconds to generate a 5 mm × 5 mm Deep-MUSE
image from a 5 mm × 5 mm MUSE image. Therefore, our approach will require ∼6 mins in total
to obtain a 5 mm × 5 mm Deep-MUSE image that is comparable to a standard H&E-stained
image. With the proposed Deep-MUSE workflow, it is possible to provide rapid histology ∼6
mins. Second, the deep learning model outputs virtual H&E-stained images with a consistent
style, and reduces the color variations influenced by different lab workers and staining conditions,
thus providing a unified color tone for accurate diagnoses. We compared the performance of
pix2pix and CycleGAN models, finding that the CycleGAN model provides images as high
quality as the pix2pix model, while offering higher flexibility. For instance, for FFPE mouse
brain thin sections, the CycleGAN model has comparable performance with the pix2pix model

https://doi.org/10.6084/m9.figshare.14742972
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on the validation dataset. However, the pix2pix model requires paired MUSE and H&E-stained
images with a high correlation for training. The correlation between these image pairs will be
easily affected by the physical staining process and image registration quality. On the contrary,
the H&E-stained image data for CycleGAN model training does not have such strict requirements
due to the unpaired training mode. For thick mouse brain samples, the pix2pix model cannot be
applied as there is no paired image data for the model training. It is also not possible to directly
test MUSE images of the thick tissue on a well-trained pix2pix model trained by FFPE thin
section because the color tone of the MUSE images of thin section and thick tissue is different
(Fig. S7). The CycleGAN model can easily select H&E-stained images from the database for
model training, which simplifies the data pre-processing procedures by eliminating the need for
image registration.

The limitations of the proposed workflow can be stated in the following ways. First, three
models corresponding to mouse brain samples prepared by three different sample preparation
protocols must be trained separately because of the color tone variation (Fig. 2(A), 4(A), and
6(A)). One possible solution is to modify our system with a monochrome camera to acquire
grayscale images. The unified CycleGAN model can be trained with the mixed grayscale image
data of thin and thick tissue samples. Second, our current model can only be applied to obtain
virtual H&E staining because other staining methods, like Masson’s trichrome stain and Jones’
silver stain, have not been added to the training dataset. To achieve the multi-staining network and
extend the application scenarios, Deep-MUSE images with individual staining or a mixture of
multiple staining can be generated by simply adding the condition label to different stained image
domains, e.g., a digital staining matrix to the input image for paired training [40], or domain
labels for unpaired multi-domain image-to-image translation [41]. Finally, we have focused on
normal mouse brain and liver tissues in this study. More investigations are needed to test for
the style transformation accuracy on human specimens, especially for cancerous tissues from
different organs.

The potential applications for the presented workflow are clear. Deep-MUSE images provide
high molecular contrast with subcellular resolution without laborious sample preparation (e.g.,
staining only), which can enable intraoperative pathologic assessment. For example, during
a surgical operation, a fresh human tissue excised by a surgeon in the operating room can be
placed into our system after staining. Subsequently, a high-resolution Deep-MUSE image for a
typical brain biopsy (5 mm × 5 mm) will be obtained ∼6 mins, which can provide an alternative
to intraoperative frozen section histology which takes ∼30 mins. Different cells in Deep-MUSE
images can also be automatically classified and graded by deep learning algorithms [42–44]. We
believe that our proposed novel workflow holds great promise as an accurate and intraoperative
assessment tool used by surgeons and pathologists in hospitals.
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